REPLICACION DEL ADN
Se produce siempre en sentido 5' → 3', siendo el extremo 3'-OH libre el punto a partir del cual se produce la elongación del ADN. Esto plantea un problema, y es que las cadenas tienen que crecer simultáneamente a pesar de que son antiparalelas, es decir, que cada cadena tiene el extremo 5' enfrentado con el extremo 3' de la otra cadena. Por ello, una de las cadenas debería ser sintetizada en dirección 3' → 5'.
Este problema lo resolvieron los científicos japoneses Reiji Okazaki y Tsuneko Okazaki en la década de 1960, al descubrir que una de las nuevas cadenas de ADN se sintetiza en forma de trozos cortos que, en su honor, se denominan fragmentos de Okazaki. Su longitud suele variar entre 1000 y 2000 nucleótidos en las bacterias y entre 100 y 400 nucleótidos en eucariontes.
La cadena que se sintetiza en el mismo sentido que avanza la horquilla de replicación se denomina hebra adelantada (en inglés, leading strand, que a veces se traduce por líder o conductora) y se sintetiza de forma continua por la ADN polimerasa, mientras que la que se sintetiza en sentido contrario al avance se denomina hebra rezagada o retrasada (en inglés, lagging strand), cuya síntesis se realiza de forma discontinua teniendo que esperar a que la horquilla de replicación avance para disponer de una cierta longitud de ADN molde.
La helicasa rompe los puentes de hidrógeno de la doble hélice permitiendo el avance de la horquilla de replicación.
La topoisomerasa impide que el ADN se enrede debido al superenrollamiento producido por la separación de la doble hélice.
Las proteínas SSB se unen la hebra discontínua de ADN, impidiendo que ésta se una consigo misma.
La ADN polimerasa III sintetiza la cadena complementaria de forma continua en la hebra adelantada y de forma discontínua en la hebra rezagada.
La ARN primasa sintetiza el cebador de ARN necesario para la síntesis de la cadena complementaria a la cadena rezagada.
La ADN ligasa une los fragmentos de Okazaki.
El cebador: son pequeñas unidades de RNA que se unen a los fragmentos para que la ADN polimerasa reconozca donde debe unirse.
La ADN ligasa une los fragmentos de Okazaki.
El cebador: son pequeñas unidades de RNA que se unen a los fragmentos para que la ADN polimerasa reconozca donde debe unirse.
INICIACIÓN
ELONGACIÓN
los cebadores los quita la ADN polimerasa I y coloca bases a la cadena en crecimiento por la ligasa mediante consumo de ATP en dirección a la horquilla de replicación, es decir, en dirección 5' → 3' en la hebra rezagada y 3' → 5' en la hebra adelantada, rompiendo los puentes de hidrógeno que mantienen unida la doble hélice.[3] El siguiente conjunto de proteínas reclutadas son las denominadas proteínas SSB (single-stranded DNA binding proteins, proteínas ligantes de DNA monocatenario) encargadas de la estabilización del ADN monocatenario generado por la acción de las helicasas, impidiendo así que el ADN se renaturalice o forme de nuevo la doble hélice, de manera que pueda servir de molde. Estas proteínas se unen de forma cooperativa, por lo que su unión al DNA conforme avanza la helicasa es rápida. Por otro lado, conforme las helicasas van avanzando se van generando superenrollamientos en la doble cadena de ADN por delante de la horquilla y si éstos no fueran eliminados, llegado a un punto el replisoma ya no podría seguir avanzando. Las topoisomerasas son las enzimas encargadas de eliminar los superenrollamientos cortando una o las dos cadenas de ADN y pasándolas a través de la rotura realizada, sellando a continuación la brecha
ELONGACIÓN
Enzimas que participan en la replicación de E. coli: helicasa, proteínas SSB, topoisomerasa, ARN primasa, Holoenzima ADN Pol IIIEn el siguiente paso, la holoenzima ADN Pol III cataliza la síntesis de las nuevas cadenas añadiendo nucleótidos sobre el molde. Esta síntesis se da bidireccionalmente desde cada origen, con dos horquillas de replicación que avanzan en sentido opuesto. Cuando el avance de dos horquillas adyacentes las lleva a encontrarse, es decir, cuando dos burbujas se tocan, se fusionan, y cuando todas se han fusionado todo el cromosoma ha quedado replicado.
Puesto que la holoenzima ADN Pol III necesita de un extremo 3'-OH libre, es necesario que una ARN primasa catalice la formación de un fragmento corto específico de ARN llamado cebador, que determinará el punto por donde la ADN polimerasa comienza a añadir nucleótidos. Así, durante la síntesis, en cada horquilla de replicación se van formando dos copias nuevas a partir del cebador sintetizado en cada una de las dos hebras de ADN que se separaron en la fase de iniciación, pero debido a la unidireccionalidad de la actividad polimerasa de la ADN Pol III, que sólo es capaz de sintetizar en sentido 5´ → 3', la replicación sólo puede ser continua en la hebra adelantada; en la hebra rezagada es discontinua, dando lugar a los fragmentos de Okazaki.
La mitad del dímero de la holoenzima ADN Pol III sintetiza la hebra adelantada y la otra mitad la hebra rezagada.
En la hebra rezagada, cuando la ADN Pol III hace contacto con el extremo de otro fragmento de Okazaki contiguo, el cebador de ARN de éste es eliminado y los dos fragmentos de Okazaki de ADN recién sintetizado son unidos. Una vez se han juntado todos se completa la doble hélice de ADN. La eliminación de cebadores también se da en la hebra conductora, de síntesis continua, pero debido a que en ésta hay un solo cebador es un proceso que sólo tiene lugar una vez, mientras que en la hebra rezagada se dará tantas veces como fragmentos de Okazaki haya. Para ello intervienen una serie de enzimas: la enzima RNasa H elimina el cebador a excepción del ribonucleótido directamente unido al ADN; la ADN Pol I elimina este ribonucleótido gracias a su actividad exonucleasa 5' → 3' y rellena el hueco con ADN quedando una molécula completa a excepción de una rotura (o "mella") entre el extremo 3'-OH libre y el fosfato 5' de la cadena reparada; por último, la ADN ligasa sella esa rotura catalizando la reacción de condensación entre el grupo fosfato y el OH de la desoxirribosa del nucleótido contiguo, completando el enlace fosfodiéster; para ello, es preciso hidrolizar una molécula de ATP.
No hay comentarios:
Publicar un comentario