martes, 29 de mayo de 2012

REGULACIÓN DE LA TRANSCRIPCIÓN EN ORGANISMOS EUCARIOTICOS


En las células eucariotas, la capacidad de expresar proteínas biológicamente activas resulta de  diferentes niveles  regulatorios.


                                     




La compactación de la cromatina afecta la capacidad de unión de las enzimas y factores transcripcionales de genes específicos. La cromatina se puede dividir en dos clases según su patrón de tinción. La eucromatina se tiñe suavemente y se corresponde con regiones  del genoma que están disponibles  para la transcripción. Por otro lado,  la heterocromatina, se tiñe intensamente  y se corresponde a regiones del genoma que  están densamente compactadas e inaccesibles para el aparato transcripcional.
Se pueden distinguir dos clases de heterocromatina: la constitutiva y la facultativa. La constitutiva hace referencia a cromosomas o parte de ellos que son heterocromáticos en todas las células de una misma especie, mientras que la facultativa implica zonas de cromosomas que se pueden descompactar tornándose en  eucromatina  en algunas células de un mismo organismo.
Como la heterocromatina no puede ser transcripta, la expresión génica en los eucariontes se puede reprimir  por condensación de eucromatina en heterocromatina. Todavía no se conocen todos los factores que  modulan la descompactación de la cromatina. Ciertamente hay proteínas que reconocen secuencias específicas del DNA y una vez unidas, transmiten la señal  de descondensación de  cerca de 10000 pares de bases correspondientes a un bucle de la cromatina.

Las acetilaciones y desacetilaciones de histonas son modificaciones covalentes frecuentes en estos fenómenos de descompactación cromatínica. Un ejemplo típico de este tipo de regulación ocurre  en  la acetilación de coactivadores involucrados en las transcripciones genéticas moduladas por las hormonas tiroideas. Las acetilaciones se producen en los residuos de lisina de los extremos aminoterminales de las histonas, reduciendo su carga positiva y por lo tanto su afinidad de unión al ADN cargado negativamente. La desacetilación de las histonas, mediada por desacetilasas provoca el efecto contrario (recompactación).

Secuencias características de organización del DNA como los  palíndromes así como la disposición espacial del  DNA Z han sido relacionados con señalizaciones para el sitio de inicio de la transcripción.

 Modificaciones covalentes del ADN


              Metilaciones de  residuos de desoxicitidina:

La metilación de los restos de citosina en el ADN, especialmente en los sitios promotores, dificultan la transcripción. Por ejemplo: los genes de globina están más metilados en células no productoras de hemoglobina que en los eritroblastos. Las metilaciones se producen  en  secuencias específicamente reconocidas ( 5’--- m CpG ---3’) que generalmente se agrupan en “islotes” ricos en GC, con frecuencia  dentro o cerca  de regiones reguladoras de la transcripción.
La metilación puede inhibir la transcripción de los genes al interferir  en la capacidad de los factores de transcripción  para reconocer los sitios de unión al ADN  o alterando las conformaciones del ADN  dificultando la polimerización de la ARN polimerasa. Uno de los ejemplos más espectaculares de la metilación  ocurre durante el fenómeno de impresión genómica. Así, el conjunto de cromosomas heredados del progenitor masculino no es funcionalmente equivalente al conjunto de cromosomas heredados  de la madre.Existen por lo menos 100 genes sometidos a esta expresión diferencial. Las versiones activas e inactivas de los genes difieren en sus patrones de metilación. Las diferencias en los alelos se originan durante la gametogénesis.

             Modificación del número y de la estructura de los genes:

La eliminación total o parcial  de genes impide la formación de ARNm y de la proteína correspondiente, los glóbulos rojos son un caso extremo donde una vez sintetizadas las proteínas estructurales y funcionales, la eliminación del núcleo en la etapa de eritroblasto ortocromático produce una célula incapaz de sintetizar toda otra proteína de novo presentando un 90% del contenido proteico total como hemoglobina.

Otro caso es la recombinación somática de la línea  germinal de los linfocitos B. En este tipo particular de regulación de la expresión de genética,  los genes codificantes de las cadenas pesadas y livianas de la inmunoglobulinas sufren un rearreglo independiente de la presencia del antígeno. Allí, se produce el corte y empalme al azar de diversos fragmentos génicos de manera irreversible que dan origen al variado repertorio de las inmunoglobulinas.

Por otra parte, la presencia de genes en tandem, implica la presencia de  de múltiples copias de un gen que aumentan la capacidad de producción de la proteína requerida en grandes cantidades. Es el caso de los  genes codificantes de histonas y ARN 5S.

La regulación génica se puede regular también en función de la disponibilidad del DNA incrementando el número de copias de un gen  accesible. Este mecanismo de regulación se conoce como amplificación génica. Una forma de amplificación es la repetición sucesiva de la replicación de una secuencia específica del ADN. Este fenómeno se observó en la amplificación de ciertos genes cuyos productos son necesarios  para el desarrollo de algunos insectos y anfibios. Como ejemplo puede citarse  el ARN ribosómico en la rana Xenopus laevis, donde los gnes que codifican los ARN r 5.8 S, 18S y 28 S se amplifican de 500 a 2 millones de copias.

 CONTROL TRANSCRIPCIONAL DE LA EXPRESION GENETICA

Constituye uno de los modos más importantes de regulación de la expresión proteica en eucariontes. En esta categoría están incluídos los promotores, la presencia de secuencias regulatorias potenciadoras (enhancers), y la interacción entre múltiples proteínas activadoras o inhibidoras que actúan mediante su unión a secuencias específicas de reconocimiento al ADN.Las regulaciones pueden ser de tipo CIS o TRANS.

Cuando el elemento regulador transcripcional es parte de la cadena polinucleotídica donde se localiza el gen a regular, se denomina regulador CIS. Evidentemente se tratan de secuencias especiales del ADN  (promotores y enhancers).
Cuando los elementos regulatorios son de naturaleza y origen  diferente a la secuencia genética a controlar, la regulación es de tipo TRANS (aquí se incluyen a los factores de transcripción generales,  histoespecíficos y  todas las proteínas regulatorias con capacidad de unión al ADN).









No hay comentarios:

Publicar un comentario