lunes, 14 de mayo de 2012

INTRODUCCION



La traducción es el segundo proceso de la síntesis proteica (parte del proceso general de la expresión génica). La traducción ocurre tanto en el citoplasma, donde se encuentran los ribosomas, como también en el retículo endoplasmático rugoso (RER). Los ribosomas están formados por una subunidad pequeña y una grande que rodean al ARNm. En la traducción, el ARN mensajero se decodifica para producir un polipéptido específico de acuerdo con las reglas especificadas por el código genético. Es el proceso que convierte una secuencia de ARNm en una cadena de aminoácidos para formar una proteína. Es necesario que la traducción venga precedida de un proceso de transcripción. El proceso de traducción tiene cuatro fases: activación, iniciación, elongación y terminación (entre todos describen el crecimiento de la cadena de aminoácidos, o polipéptido, que es el producto de la traducción).
En la activación, el aminoácido (AA) correcto se une al ARN de transferencia (ARNt) correcto. Aunque técnicamente esto no es un paso de la traducción, es necesario para que se produzca la traducción. El AA se une por su grupo carboxilo con el OH 3' del ARNt mediante un enlace de tipo éster. Cuando el ARNt está enlazado con un aminoácido, se dice que está "cargado". La iniciación supone que la subunidad pequeña del ribosoma se enlaza con el extremo 5' del ARNm con la ayuda de factores de iniciación (FI), otras proteínas que asisten el proceso. La elongación ocurre cuando el siguiente aminoacil-ARNt (el ARNt cargado) de la secuencia se enlaza con el ribosoma además de con un GTP y un factor de elongación. La terminación del polipéptido sucede cuando la zona A del ribosoma se encuentra con un codón de parada (sin sentido), que son el UAA, UAG o UGA. Cuando esto sucede, ningún ARNt puede reconocerlo, pero el factor de liberación puede reconocer los codones sin sentido y provoca la liberación de la cadena polipeptídica. La capacidad de desactivar o inhibir la traducción de la biosíntesis de proteínas se utiliza en antibióticos como la anisomicina, la cicloheximida, el cloranfenicol y la tetraciclina.




El ARNm porta información genética codificada en forma de secuencia de ribonucleótidos desde los cromosomas hasta los ribosomas. Los ribonucleótidos son "leídos" por la maquinaria traductora en una secuencia de tripletes de nucleótidos llamados codones. Cada uno de estos tripletes codifica un aminoácido específico. El ribosoma y las moléculas de ARNt traducen este código para producir proteínas. El ribosoma es una estructura con varias subunidades que contiene ARNr y proteínas. Es la "fábrica" en la que se montan los aminoácidos para formar proteínas. El ARNt son pequeñas cadenas de ARN no codificador (de 74-93 nucleótidos) que transportan aminoácidos al ribosoma. Los ARNt tienen un lugar para anclarse al aminoácido, y un lugar llamado anticodón. El anticodón es un triplete de ARN complementario al triplete de ARNm que codifica a su aminoácido. La aminoacil-ARNt sintetasa (una enzima) cataliza el enlace entre los ARNt específicos y los aminoácidos que concuerdan con sus anticodones. El producto de esta reacción es una molécula de aminoacil-ARNt. Esta aminoacil-ARNt viaja al interior del ribosoma, donde los codones de ARNm se enfrentan con los anticodones específicos del ARNt mediante el emparejamiento de bases. Luego se utilizan los aminoácidos que portan los ARNt para montar una proteína. La energía requerida para traducir proteínas es significativa. Para una proteína que contenga n aminoácidos, el número de enlaces fosfato de alta energía necesarios para traducirla es 4n-1. Es también el proceso mediante el que los ribosomas utilizan la secuencia de codones del ARNm para producir un polipéptido con una secuencia particular de aminoácidos.





Pamela C Champe, Richard A Harvey and Denise R Ferrier (2005). Lippincott's Illustrated Reviews: Biochemistry (3rd ed.). Lippincott Williams & Wilkins. ISBN 0-7817-2265-9.

No hay comentarios:

Publicar un comentario